/****************************************************************************** * Spine Runtimes Software License v2.5 * * Copyright (c) 2013-2016, Esoteric Software * All rights reserved. * * You are granted a perpetual, non-exclusive, non-sublicensable, and * non-transferable license to use, install, execute, and perform the Spine * Runtimes software and derivative works solely for personal or internal * use. Without the written permission of Esoteric Software (see Section 2 of * the Spine Software License Agreement), you may not (a) modify, translate, * adapt, or develop new applications using the Spine Runtimes or otherwise * create derivative works or improvements of the Spine Runtimes or (b) remove, * delete, alter, or obscure any trademarks or any copyright, trademark, patent, * or other intellectual property or proprietary rights notices on or in the * Software, including any copy thereof. Redistributions in binary or source * form must include this license and terms. * * THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF * USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ using System; namespace Spine { internal class Triangulator { private readonly ExposedList> convexPolygons = new ExposedList>(); private readonly ExposedList> convexPolygonsIndices = new ExposedList>(); private readonly ExposedList indicesArray = new ExposedList(); private readonly ExposedList isConcaveArray = new ExposedList(); private readonly ExposedList triangles = new ExposedList(); private readonly Pool> polygonPool = new Pool>(); private readonly Pool> polygonIndicesPool = new Pool>(); public ExposedList Triangulate (ExposedList verticesArray) { var vertices = verticesArray.Items; int vertexCount = verticesArray.Count >> 1; var indicesArray = this.indicesArray; indicesArray.Clear(); int[] indices = indicesArray.Resize(vertexCount).Items; for (int i = 0; i < vertexCount; i++) indices[i] = i; var isConcaveArray = this.isConcaveArray; bool[] isConcave = isConcaveArray.Resize(vertexCount).Items; for (int i = 0, n = vertexCount; i < n; ++i) isConcave[i] = IsConcave(i, vertexCount, vertices, indices); var triangles = this.triangles; triangles.Clear(); triangles.EnsureCapacity(Math.Max(0, vertexCount - 2) << 2); while (vertexCount > 3) { // Find ear tip. int previous = vertexCount - 1, i = 0, next = 1; // outer: while (true) { if (!isConcave[i]) { int p1 = indices[previous] << 1, p2 = indices[i] << 1, p3 = indices[next] << 1; float p1x = vertices[p1], p1y = vertices[p1 + 1]; float p2x = vertices[p2], p2y = vertices[p2 + 1]; float p3x = vertices[p3], p3y = vertices[p3 + 1]; for (int ii = (next + 1) % vertexCount; ii != previous; ii = (ii + 1) % vertexCount) { if (!isConcave[ii]) continue; int v = indices[ii] << 1; float vx = vertices[v], vy = vertices[v + 1]; if (PositiveArea(p3x, p3y, p1x, p1y, vx, vy)) { if (PositiveArea(p1x, p1y, p2x, p2y, vx, vy)) { if (PositiveArea(p2x, p2y, p3x, p3y, vx, vy)) goto break_outer; // break outer; } } } break; } break_outer: if (next == 0) { do { if (!isConcave[i]) break; i--; } while (i > 0); break; } previous = i; i = next; next = (next + 1) % vertexCount; } // Cut ear tip. triangles.Add(indices[(vertexCount + i - 1) % vertexCount]); triangles.Add(indices[i]); triangles.Add(indices[(i + 1) % vertexCount]); indicesArray.RemoveAt(i); isConcaveArray.RemoveAt(i); vertexCount--; int previousIndex = (vertexCount + i - 1) % vertexCount; int nextIndex = i == vertexCount ? 0 : i; isConcave[previousIndex] = IsConcave(previousIndex, vertexCount, vertices, indices); isConcave[nextIndex] = IsConcave(nextIndex, vertexCount, vertices, indices); } if (vertexCount == 3) { triangles.Add(indices[2]); triangles.Add(indices[0]); triangles.Add(indices[1]); } return triangles; } public ExposedList> Decompose (ExposedList verticesArray, ExposedList triangles) { var vertices = verticesArray.Items; var convexPolygons = this.convexPolygons; for (int i = 0, n = convexPolygons.Count; i < n; i++) { polygonPool.Free(convexPolygons.Items[i]); } convexPolygons.Clear(); var convexPolygonsIndices = this.convexPolygonsIndices; for (int i = 0, n = convexPolygonsIndices.Count; i < n; i++) { polygonIndicesPool.Free(convexPolygonsIndices.Items[i]); } convexPolygonsIndices.Clear(); var polygonIndices = polygonIndicesPool.Obtain(); polygonIndices.Clear(); var polygon = polygonPool.Obtain(); polygon.Clear(); // Merge subsequent triangles if they form a triangle fan. int fanBaseIndex = -1, lastWinding = 0; int[] trianglesItems = triangles.Items; for (int i = 0, n = triangles.Count; i < n; i += 3) { int t1 = trianglesItems[i] << 1, t2 = trianglesItems[i + 1] << 1, t3 = trianglesItems[i + 2] << 1; float x1 = vertices[t1], y1 = vertices[t1 + 1]; float x2 = vertices[t2], y2 = vertices[t2 + 1]; float x3 = vertices[t3], y3 = vertices[t3 + 1]; // If the base of the last triangle is the same as this triangle, check if they form a convex polygon (triangle fan). var merged = false; if (fanBaseIndex == t1) { int o = polygon.Count - 4; float[] p = polygon.Items; int winding1 = Winding(p[o], p[o + 1], p[o + 2], p[o + 3], x3, y3); int winding2 = Winding(x3, y3, p[0], p[1], p[2], p[3]); if (winding1 == lastWinding && winding2 == lastWinding) { polygon.Add(x3); polygon.Add(y3); polygonIndices.Add(t3); merged = true; } } // Otherwise make this triangle the new base. if (!merged) { if (polygon.Count > 0) { convexPolygons.Add(polygon); convexPolygonsIndices.Add(polygonIndices); } else { polygonPool.Free(polygon); polygonIndicesPool.Free(polygonIndices); } polygon = polygonPool.Obtain(); polygon.Clear(); polygon.Add(x1); polygon.Add(y1); polygon.Add(x2); polygon.Add(y2); polygon.Add(x3); polygon.Add(y3); polygonIndices = polygonIndicesPool.Obtain(); polygonIndices.Clear(); polygonIndices.Add(t1); polygonIndices.Add(t2); polygonIndices.Add(t3); lastWinding = Winding(x1, y1, x2, y2, x3, y3); fanBaseIndex = t1; } } if (polygon.Count > 0) { convexPolygons.Add(polygon); convexPolygonsIndices.Add(polygonIndices); } // Go through the list of polygons and try to merge the remaining triangles with the found triangle fans. for (int i = 0, n = convexPolygons.Count; i < n; i++) { polygonIndices = convexPolygonsIndices.Items[i]; if (polygonIndices.Count == 0) continue; int firstIndex = polygonIndices.Items[0]; int lastIndex = polygonIndices.Items[polygonIndices.Count - 1]; polygon = convexPolygons.Items[i]; int o = polygon.Count - 4; float[] p = polygon.Items; float prevPrevX = p[o], prevPrevY = p[o + 1]; float prevX = p[o + 2], prevY = p[o + 3]; float firstX = p[0], firstY = p[1]; float secondX = p[2], secondY = p[3]; int winding = Winding(prevPrevX, prevPrevY, prevX, prevY, firstX, firstY); for (int ii = 0; ii < n; ii++) { if (ii == i) continue; var otherIndices = convexPolygonsIndices.Items[ii]; if (otherIndices.Count != 3) continue; int otherFirstIndex = otherIndices.Items[0]; int otherSecondIndex = otherIndices.Items[1]; int otherLastIndex = otherIndices.Items[2]; var otherPoly = convexPolygons.Items[ii]; float x3 = otherPoly.Items[otherPoly.Count - 2], y3 = otherPoly.Items[otherPoly.Count - 1]; if (otherFirstIndex != firstIndex || otherSecondIndex != lastIndex) continue; int winding1 = Winding(prevPrevX, prevPrevY, prevX, prevY, x3, y3); int winding2 = Winding(x3, y3, firstX, firstY, secondX, secondY); if (winding1 == winding && winding2 == winding) { otherPoly.Clear(); otherIndices.Clear(); polygon.Add(x3); polygon.Add(y3); polygonIndices.Add(otherLastIndex); prevPrevX = prevX; prevPrevY = prevY; prevX = x3; prevY = y3; ii = 0; } } } // Remove empty polygons that resulted from the merge step above. for (int i = convexPolygons.Count - 1; i >= 0; i--) { polygon = convexPolygons.Items[i]; if (polygon.Count == 0) { convexPolygons.RemoveAt(i); polygonPool.Free(polygon); polygonIndices = convexPolygonsIndices.Items[i]; convexPolygonsIndices.RemoveAt(i); polygonIndicesPool.Free(polygonIndices); } } return convexPolygons; } static private bool IsConcave (int index, int vertexCount, float[] vertices, int[] indices) { int previous = indices[(vertexCount + index - 1) % vertexCount] << 1; int current = indices[index] << 1; int next = indices[(index + 1) % vertexCount] << 1; return !PositiveArea(vertices[previous], vertices[previous + 1], vertices[current], vertices[current + 1], vertices[next], vertices[next + 1]); } static private bool PositiveArea (float p1x, float p1y, float p2x, float p2y, float p3x, float p3y) { return p1x * (p3y - p2y) + p2x * (p1y - p3y) + p3x * (p2y - p1y) >= 0; } static private int Winding (float p1x, float p1y, float p2x, float p2y, float p3x, float p3y) { float px = p2x - p1x, py = p2y - p1y; return p3x * py - p3y * px + px * p1y - p1x * py >= 0 ? 1 : -1; } } }