You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

385 lines
14 KiB

/******************************************************************************
* Spine Runtimes Software License v2.5
*
* Copyright (c) 2013-2016, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable, and
* non-transferable license to use, install, execute, and perform the Spine
* Runtimes software and derivative works solely for personal or internal
* use. Without the written permission of Esoteric Software (see Section 2 of
* the Spine Software License Agreement), you may not (a) modify, translate,
* adapt, or develop new applications using the Spine Runtimes or otherwise
* create derivative works or improvements of the Spine Runtimes or (b) remove,
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
* or other intellectual property or proprietary rights notices on or in the
* Software, including any copy thereof. Redistributions in binary or source
* form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
using System;
namespace Spine {
/// <summary>
/// Stores a bone's current pose.
/// <para>
/// A bone has a local transform which is used to compute its world transform. A bone also has an applied transform, which is a
/// local transform that can be applied to compute the world transform. The local transform and applied transform may differ if a
/// constraint or application code modifies the world transform after it was computed from the local transform.
/// </para>
/// </summary>
public class Bone : IUpdatable {
static public bool yDown;
internal BoneData data;
internal Skeleton skeleton;
internal Bone parent;
internal ExposedList<Bone> children = new ExposedList<Bone>();
internal float x, y, rotation, scaleX, scaleY, shearX, shearY;
internal float ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY;
internal bool appliedValid;
internal float a, b, worldX;
internal float c, d, worldY;
// internal float worldSignX, worldSignY;
// public float WorldSignX { get { return worldSignX; } }
// public float WorldSignY { get { return worldSignY; } }
internal bool sorted;
public BoneData Data { get { return data; } }
public Skeleton Skeleton { get { return skeleton; } }
public Bone Parent { get { return parent; } }
public ExposedList<Bone> Children { get { return children; } }
/// <summary>The local X translation.</summary>
public float X { get { return x; } set { x = value; } }
/// <summary>The local Y translation.</summary>
public float Y { get { return y; } set { y = value; } }
/// <summary>The local rotation.</summary>
public float Rotation { get { return rotation; } set { rotation = value; } }
/// <summary>The local scaleX.</summary>
public float ScaleX { get { return scaleX; } set { scaleX = value; } }
/// <summary>The local scaleY.</summary>
public float ScaleY { get { return scaleY; } set { scaleY = value; } }
/// <summary>The local shearX.</summary>
public float ShearX { get { return shearX; } set { shearX = value; } }
/// <summary>The local shearY.</summary>
public float ShearY { get { return shearY; } set { shearY = value; } }
/// <summary>The rotation, as calculated by any constraints.</summary>
public float AppliedRotation { get { return arotation; } set { arotation = value; } }
/// <summary>The applied local x translation.</summary>
public float AX { get { return ax; } set { ax = value; } }
/// <summary>The applied local y translation.</summary>
public float AY { get { return ay; } set { ay = value; } }
/// <summary>The applied local scaleX.</summary>
public float AScaleX { get { return ascaleX; } set { ascaleX = value; } }
/// <summary>The applied local scaleY.</summary>
public float AScaleY { get { return ascaleY; } set { ascaleY = value; } }
/// <summary>The applied local shearX.</summary>
public float AShearX { get { return ashearX; } set { ashearX = value; } }
/// <summary>The applied local shearY.</summary>
public float AShearY { get { return ashearY; } set { ashearY = value; } }
public float A { get { return a; } }
public float B { get { return b; } }
public float C { get { return c; } }
public float D { get { return d; } }
public float WorldX { get { return worldX; } }
public float WorldY { get { return worldY; } }
public float WorldRotationX { get { return MathUtils.Atan2(c, a) * MathUtils.RadDeg; } }
public float WorldRotationY { get { return MathUtils.Atan2(d, b) * MathUtils.RadDeg; } }
/// <summary>Returns the magnitide (always positive) of the world scale X.</summary>
public float WorldScaleX { get { return (float)Math.Sqrt(a * a + c * c); } }
/// <summary>Returns the magnitide (always positive) of the world scale Y.</summary>
public float WorldScaleY { get { return (float)Math.Sqrt(b * b + d * d); } }
/// <param name="parent">May be null.</param>
public Bone (BoneData data, Skeleton skeleton, Bone parent) {
if (data == null) throw new ArgumentNullException("data", "data cannot be null.");
if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null.");
this.data = data;
this.skeleton = skeleton;
this.parent = parent;
SetToSetupPose();
}
/// <summary>Same as <see cref="UpdateWorldTransform"/>. This method exists for Bone to implement <see cref="Spine.IUpdatable"/>.</summary>
public void Update () {
UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY);
}
/// <summary>Computes the world transform using the parent bone and this bone's local transform.</summary>
public void UpdateWorldTransform () {
UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY);
}
/// <summary>Computes the world transform using the parent bone and the specified local transform.</summary>
public void UpdateWorldTransform (float x, float y, float rotation, float scaleX, float scaleY, float shearX, float shearY) {
ax = x;
ay = y;
arotation = rotation;
ascaleX = scaleX;
ascaleY = scaleY;
ashearX = shearX;
ashearY = shearY;
appliedValid = true;
Skeleton skeleton = this.skeleton;
Bone parent = this.parent;
if (parent == null) { // Root bone.
float rotationY = rotation + 90 + shearY;
float la = MathUtils.CosDeg(rotation + shearX) * scaleX;
float lb = MathUtils.CosDeg(rotationY) * scaleY;
float lc = MathUtils.SinDeg(rotation + shearX) * scaleX;
float ld = MathUtils.SinDeg(rotationY) * scaleY;
if (skeleton.flipX) {
x = -x;
la = -la;
lb = -lb;
}
if (skeleton.flipY != yDown) {
y = -y;
lc = -lc;
ld = -ld;
}
a = la;
b = lb;
c = lc;
d = ld;
worldX = x + skeleton.x;
worldY = y + skeleton.y;
return;
}
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d;
worldX = pa * x + pb * y + parent.worldX;
worldY = pc * x + pd * y + parent.worldY;
switch (data.transformMode) {
case TransformMode.Normal: {
float rotationY = rotation + 90 + shearY;
float la = MathUtils.CosDeg(rotation + shearX) * scaleX;
float lb = MathUtils.CosDeg(rotationY) * scaleY;
float lc = MathUtils.SinDeg(rotation + shearX) * scaleX;
float ld = MathUtils.SinDeg(rotationY) * scaleY;
a = pa * la + pb * lc;
b = pa * lb + pb * ld;
c = pc * la + pd * lc;
d = pc * lb + pd * ld;
return;
}
case TransformMode.OnlyTranslation: {
float rotationY = rotation + 90 + shearY;
a = MathUtils.CosDeg(rotation + shearX) * scaleX;
b = MathUtils.CosDeg(rotationY) * scaleY;
c = MathUtils.SinDeg(rotation + shearX) * scaleX;
d = MathUtils.SinDeg(rotationY) * scaleY;
break;
}
case TransformMode.NoRotationOrReflection: {
float s = pa * pa + pc * pc, prx;
if (s > 0.0001f) {
s = Math.Abs(pa * pd - pb * pc) / s;
pb = pc * s;
pd = pa * s;
prx = MathUtils.Atan2(pc, pa) * MathUtils.RadDeg;
} else {
pa = 0;
pc = 0;
prx = 90 - MathUtils.Atan2(pd, pb) * MathUtils.RadDeg;
}
float rx = rotation + shearX - prx;
float ry = rotation + shearY - prx + 90;
float la = MathUtils.CosDeg(rx) * scaleX;
float lb = MathUtils.CosDeg(ry) * scaleY;
float lc = MathUtils.SinDeg(rx) * scaleX;
float ld = MathUtils.SinDeg(ry) * scaleY;
a = pa * la - pb * lc;
b = pa * lb - pb * ld;
c = pc * la + pd * lc;
d = pc * lb + pd * ld;
break;
}
case TransformMode.NoScale:
case TransformMode.NoScaleOrReflection: {
float cos = MathUtils.CosDeg(rotation), sin = MathUtils.SinDeg(rotation);
float za = pa * cos + pb * sin;
float zc = pc * cos + pd * sin;
float s = (float)Math.Sqrt(za * za + zc * zc);
if (s > 0.00001f) s = 1 / s;
za *= s;
zc *= s;
s = (float)Math.Sqrt(za * za + zc * zc);
float r = MathUtils.PI / 2 + MathUtils.Atan2(zc, za);
float zb = MathUtils.Cos(r) * s;
float zd = MathUtils.Sin(r) * s;
float la = MathUtils.CosDeg(shearX) * scaleX;
float lb = MathUtils.CosDeg(90 + shearY) * scaleY;
float lc = MathUtils.SinDeg(shearX) * scaleX;
float ld = MathUtils.SinDeg(90 + shearY) * scaleY;
if (data.transformMode != TransformMode.NoScaleOrReflection? pa * pd - pb* pc< 0 : skeleton.flipX != skeleton.flipY) {
zb = -zb;
zd = -zd;
}
a = za * la + zb * lc;
b = za * lb + zb * ld;
c = zc * la + zd * lc;
d = zc * lb + zd * ld;
return;
}
}
if (skeleton.flipX) {
a = -a;
b = -b;
}
if (skeleton.flipY != Bone.yDown) {
c = -c;
d = -d;
}
}
public void SetToSetupPose () {
BoneData data = this.data;
x = data.x;
y = data.y;
rotation = data.rotation;
scaleX = data.scaleX;
scaleY = data.scaleY;
shearX = data.shearX;
shearY = data.shearY;
}
/// <summary>
/// Computes the individual applied transform values from the world transform. This can be useful to perform processing using
/// the applied transform after the world transform has been modified directly (eg, by a constraint)..
///
/// Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation.
/// </summary>
internal void UpdateAppliedTransform () {
appliedValid = true;
Bone parent = this.parent;
if (parent == null) {
ax = worldX;
ay = worldY;
arotation = MathUtils.Atan2(c, a) * MathUtils.RadDeg;
ascaleX = (float)Math.Sqrt(a * a + c * c);
ascaleY = (float)Math.Sqrt(b * b + d * d);
ashearX = 0;
ashearY = MathUtils.Atan2(a * b + c * d, a * d - b * c) * MathUtils.RadDeg;
return;
}
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d;
float pid = 1 / (pa * pd - pb * pc);
float dx = worldX - parent.worldX, dy = worldY - parent.worldY;
ax = (dx * pd * pid - dy * pb * pid);
ay = (dy * pa * pid - dx * pc * pid);
float ia = pid * pd;
float id = pid * pa;
float ib = pid * pb;
float ic = pid * pc;
float ra = ia * a - ib * c;
float rb = ia * b - ib * d;
float rc = id * c - ic * a;
float rd = id * d - ic * b;
ashearX = 0;
ascaleX = (float)Math.Sqrt(ra * ra + rc * rc);
if (ascaleX > 0.0001f) {
float det = ra * rd - rb * rc;
ascaleY = det / ascaleX;
ashearY = MathUtils.Atan2(ra * rb + rc * rd, det) * MathUtils.RadDeg;
arotation = MathUtils.Atan2(rc, ra) * MathUtils.RadDeg;
} else {
ascaleX = 0;
ascaleY = (float)Math.Sqrt(rb * rb + rd * rd);
ashearY = 0;
arotation = 90 - MathUtils.Atan2(rd, rb) * MathUtils.RadDeg;
}
}
public void WorldToLocal (float worldX, float worldY, out float localX, out float localY) {
float a = this.a, b = this.b, c = this.c, d = this.d;
float invDet = 1 / (a * d - b * c);
float x = worldX - this.worldX, y = worldY - this.worldY;
localX = (x * d * invDet - y * b * invDet);
localY = (y * a * invDet - x * c * invDet);
}
public void LocalToWorld (float localX, float localY, out float worldX, out float worldY) {
worldX = localX * a + localY * b + this.worldX;
worldY = localX * c + localY * d + this.worldY;
}
public float WorldToLocalRotationX {
get {
Bone parent = this.parent;
if (parent == null) return arotation;
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, a = this.a, c = this.c;
return MathUtils.Atan2(pa * c - pc * a, pd * a - pb * c) * MathUtils.RadDeg;
}
}
public float WorldToLocalRotationY {
get {
Bone parent = this.parent;
if (parent == null) return arotation;
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, b = this.b, d = this.d;
return MathUtils.Atan2(pa * d - pc * b, pd * b - pb * d) * MathUtils.RadDeg;
}
}
public float WorldToLocalRotation (float worldRotation) {
float sin = MathUtils.SinDeg(worldRotation), cos = MathUtils.CosDeg(worldRotation);
return MathUtils.Atan2(a * sin - c * cos, d * cos - b * sin) * MathUtils.RadDeg;
}
public float LocalToWorldRotation (float localRotation) {
float sin = MathUtils.SinDeg(localRotation), cos = MathUtils.CosDeg(localRotation);
return MathUtils.Atan2(cos * c + sin * d, cos * a + sin * b) * MathUtils.RadDeg;
}
/// <summary>
/// Rotates the world transform the specified amount and sets isAppliedValid to false.
/// </summary>
/// <param name="degrees">Degrees.</param>
public void RotateWorld (float degrees) {
float a = this.a, b = this.b, c = this.c, d = this.d;
float cos = MathUtils.CosDeg(degrees), sin = MathUtils.SinDeg(degrees);
this.a = cos * a - sin * c;
this.b = cos * b - sin * d;
this.c = sin * a + cos * c;
this.d = sin * b + cos * d;
appliedValid = false;
}
override public string ToString () {
return data.name;
}
}
}