You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
418 lines
15 KiB
418 lines
15 KiB
/******************************************************************************
|
|
* Spine Runtimes Software License v2.5
|
|
*
|
|
* Copyright (c) 2013-2016, Esoteric Software
|
|
* All rights reserved.
|
|
*
|
|
* You are granted a perpetual, non-exclusive, non-sublicensable, and
|
|
* non-transferable license to use, install, execute, and perform the Spine
|
|
* Runtimes software and derivative works solely for personal or internal
|
|
* use. Without the written permission of Esoteric Software (see Section 2 of
|
|
* the Spine Software License Agreement), you may not (a) modify, translate,
|
|
* adapt, or develop new applications using the Spine Runtimes or otherwise
|
|
* create derivative works or improvements of the Spine Runtimes or (b) remove,
|
|
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
|
|
* or other intellectual property or proprietary rights notices on or in the
|
|
* Software, including any copy thereof. Redistributions in binary or source
|
|
* form must include this license and terms.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
|
|
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
using System;
|
|
|
|
namespace Spine {
|
|
public class PathConstraint : IConstraint {
|
|
const int NONE = -1, BEFORE = -2, AFTER = -3;
|
|
const float Epsilon = 0.00001f;
|
|
|
|
internal PathConstraintData data;
|
|
internal ExposedList<Bone> bones;
|
|
internal Slot target;
|
|
internal float position, spacing, rotateMix, translateMix;
|
|
|
|
internal ExposedList<float> spaces = new ExposedList<float>(), positions = new ExposedList<float>();
|
|
internal ExposedList<float> world = new ExposedList<float>(), curves = new ExposedList<float>(), lengths = new ExposedList<float>();
|
|
internal float[] segments = new float[10];
|
|
|
|
public int Order { get { return data.order; } }
|
|
public float Position { get { return position; } set { position = value; } }
|
|
public float Spacing { get { return spacing; } set { spacing = value; } }
|
|
public float RotateMix { get { return rotateMix; } set { rotateMix = value; } }
|
|
public float TranslateMix { get { return translateMix; } set { translateMix = value; } }
|
|
public ExposedList<Bone> Bones { get { return bones; } }
|
|
public Slot Target { get { return target; } set { target = value; } }
|
|
public PathConstraintData Data { get { return data; } }
|
|
|
|
public PathConstraint (PathConstraintData data, Skeleton skeleton) {
|
|
if (data == null) throw new ArgumentNullException("data", "data cannot be null.");
|
|
if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null.");
|
|
this.data = data;
|
|
bones = new ExposedList<Bone>(data.Bones.Count);
|
|
foreach (BoneData boneData in data.bones)
|
|
bones.Add(skeleton.FindBone(boneData.name));
|
|
target = skeleton.FindSlot(data.target.name);
|
|
position = data.position;
|
|
spacing = data.spacing;
|
|
rotateMix = data.rotateMix;
|
|
translateMix = data.translateMix;
|
|
}
|
|
|
|
/// <summary>Applies the constraint to the constrained bones.</summary>
|
|
public void Apply () {
|
|
Update();
|
|
}
|
|
|
|
public void Update () {
|
|
PathAttachment attachment = target.Attachment as PathAttachment;
|
|
if (attachment == null) return;
|
|
|
|
float rotateMix = this.rotateMix, translateMix = this.translateMix;
|
|
bool translate = translateMix > 0, rotate = rotateMix > 0;
|
|
if (!translate && !rotate) return;
|
|
|
|
PathConstraintData data = this.data;
|
|
SpacingMode spacingMode = data.spacingMode;
|
|
bool lengthSpacing = spacingMode == SpacingMode.Length;
|
|
RotateMode rotateMode = data.rotateMode;
|
|
bool tangents = rotateMode == RotateMode.Tangent, scale = rotateMode == RotateMode.ChainScale;
|
|
int boneCount = this.bones.Count, spacesCount = tangents ? boneCount : boneCount + 1;
|
|
Bone[] bonesItems = this.bones.Items;
|
|
ExposedList<float> spaces = this.spaces.Resize(spacesCount), lengths = null;
|
|
float spacing = this.spacing;
|
|
if (scale || lengthSpacing) {
|
|
if (scale) lengths = this.lengths.Resize(boneCount);
|
|
for (int i = 0, n = spacesCount - 1; i < n;) {
|
|
Bone bone = bonesItems[i];
|
|
float setupLength = bone.data.length;
|
|
if (setupLength < PathConstraint.Epsilon) {
|
|
if (scale) lengths.Items[i] = 0;
|
|
spaces.Items[++i] = 0;
|
|
} else {
|
|
float x = setupLength * bone.a, y = setupLength * bone.c;
|
|
float length = (float)Math.Sqrt(x * x + y * y);
|
|
if (scale) lengths.Items[i] = length;
|
|
spaces.Items[++i] = (lengthSpacing ? setupLength + spacing : spacing) * length / setupLength;
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 1; i < spacesCount; i++)
|
|
spaces.Items[i] = spacing;
|
|
}
|
|
|
|
float[] positions = ComputeWorldPositions(attachment, spacesCount, tangents,
|
|
data.positionMode == PositionMode.Percent, spacingMode == SpacingMode.Percent);
|
|
float boneX = positions[0], boneY = positions[1], offsetRotation = data.offsetRotation;
|
|
bool tip;
|
|
if (offsetRotation == 0) {
|
|
tip = rotateMode == RotateMode.Chain;
|
|
} else {
|
|
tip = false;
|
|
Bone p = target.bone;
|
|
offsetRotation *= p.a * p.d - p.b * p.c > 0 ? MathUtils.DegRad : -MathUtils.DegRad;
|
|
}
|
|
for (int i = 0, p = 3; i < boneCount; i++, p += 3) {
|
|
Bone bone = bonesItems[i];
|
|
bone.worldX += (boneX - bone.worldX) * translateMix;
|
|
bone.worldY += (boneY - bone.worldY) * translateMix;
|
|
float x = positions[p], y = positions[p + 1], dx = x - boneX, dy = y - boneY;
|
|
if (scale) {
|
|
float length = lengths.Items[i];
|
|
if (length >= PathConstraint.Epsilon) {
|
|
float s = ((float)Math.Sqrt(dx * dx + dy * dy) / length - 1) * rotateMix + 1;
|
|
bone.a *= s;
|
|
bone.c *= s;
|
|
}
|
|
}
|
|
boneX = x;
|
|
boneY = y;
|
|
if (rotate) {
|
|
float a = bone.a, b = bone.b, c = bone.c, d = bone.d, r, cos, sin;
|
|
if (tangents)
|
|
r = positions[p - 1];
|
|
else if (spaces.Items[i + 1] < PathConstraint.Epsilon)
|
|
r = positions[p + 2];
|
|
else
|
|
r = MathUtils.Atan2(dy, dx);
|
|
r -= MathUtils.Atan2(c, a);
|
|
if (tip) {
|
|
cos = MathUtils.Cos(r);
|
|
sin = MathUtils.Sin(r);
|
|
float length = bone.data.length;
|
|
boneX += (length * (cos * a - sin * c) - dx) * rotateMix;
|
|
boneY += (length * (sin * a + cos * c) - dy) * rotateMix;
|
|
} else {
|
|
r += offsetRotation;
|
|
}
|
|
if (r > MathUtils.PI)
|
|
r -= MathUtils.PI2;
|
|
else if (r < -MathUtils.PI) //
|
|
r += MathUtils.PI2;
|
|
r *= rotateMix;
|
|
cos = MathUtils.Cos(r);
|
|
sin = MathUtils.Sin(r);
|
|
bone.a = cos * a - sin * c;
|
|
bone.b = cos * b - sin * d;
|
|
bone.c = sin * a + cos * c;
|
|
bone.d = sin * b + cos * d;
|
|
}
|
|
bone.appliedValid = false;
|
|
}
|
|
}
|
|
|
|
float[] ComputeWorldPositions (PathAttachment path, int spacesCount, bool tangents, bool percentPosition,
|
|
bool percentSpacing) {
|
|
|
|
Slot target = this.target;
|
|
float position = this.position;
|
|
float[] spacesItems = this.spaces.Items, output = this.positions.Resize(spacesCount * 3 + 2).Items, world;
|
|
bool closed = path.Closed;
|
|
int verticesLength = path.WorldVerticesLength, curveCount = verticesLength / 6, prevCurve = NONE;
|
|
|
|
float pathLength;
|
|
if (!path.ConstantSpeed) {
|
|
float[] lengths = path.Lengths;
|
|
curveCount -= closed ? 1 : 2;
|
|
pathLength = lengths[curveCount];
|
|
if (percentPosition) position *= pathLength;
|
|
if (percentSpacing) {
|
|
for (int i = 0; i < spacesCount; i++)
|
|
spacesItems[i] *= pathLength;
|
|
}
|
|
world = this.world.Resize(8).Items;
|
|
for (int i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) {
|
|
float space = spacesItems[i];
|
|
position += space;
|
|
float p = position;
|
|
|
|
if (closed) {
|
|
p %= pathLength;
|
|
if (p < 0) p += pathLength;
|
|
curve = 0;
|
|
} else if (p < 0) {
|
|
if (prevCurve != BEFORE) {
|
|
prevCurve = BEFORE;
|
|
path.ComputeWorldVertices(target, 2, 4, world, 0);
|
|
}
|
|
AddBeforePosition(p, world, 0, output, o);
|
|
continue;
|
|
} else if (p > pathLength) {
|
|
if (prevCurve != AFTER) {
|
|
prevCurve = AFTER;
|
|
path.ComputeWorldVertices(target, verticesLength - 6, 4, world, 0);
|
|
}
|
|
AddAfterPosition(p - pathLength, world, 0, output, o);
|
|
continue;
|
|
}
|
|
|
|
// Determine curve containing position.
|
|
for (;; curve++) {
|
|
float length = lengths[curve];
|
|
if (p > length) continue;
|
|
if (curve == 0)
|
|
p /= length;
|
|
else {
|
|
float prev = lengths[curve - 1];
|
|
p = (p - prev) / (length - prev);
|
|
}
|
|
break;
|
|
}
|
|
if (curve != prevCurve) {
|
|
prevCurve = curve;
|
|
if (closed && curve == curveCount) {
|
|
path.ComputeWorldVertices(target, verticesLength - 4, 4, world, 0);
|
|
path.ComputeWorldVertices(target, 0, 4, world, 4);
|
|
} else
|
|
path.ComputeWorldVertices(target, curve * 6 + 2, 8, world, 0);
|
|
}
|
|
AddCurvePosition(p, world[0], world[1], world[2], world[3], world[4], world[5], world[6], world[7], output, o,
|
|
tangents || (i > 0 && space < PathConstraint.Epsilon));
|
|
}
|
|
return output;
|
|
}
|
|
|
|
// World vertices.
|
|
if (closed) {
|
|
verticesLength += 2;
|
|
world = this.world.Resize(verticesLength).Items;
|
|
path.ComputeWorldVertices(target, 2, verticesLength - 4, world, 0);
|
|
path.ComputeWorldVertices(target, 0, 2, world, verticesLength - 4);
|
|
world[verticesLength - 2] = world[0];
|
|
world[verticesLength - 1] = world[1];
|
|
} else {
|
|
curveCount--;
|
|
verticesLength -= 4;
|
|
world = this.world.Resize(verticesLength).Items;
|
|
path.ComputeWorldVertices(target, 2, verticesLength, world, 0);
|
|
}
|
|
|
|
// Curve lengths.
|
|
float[] curves = this.curves.Resize(curveCount).Items;
|
|
pathLength = 0;
|
|
float x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0;
|
|
float tmpx, tmpy, dddfx, dddfy, ddfx, ddfy, dfx, dfy;
|
|
for (int i = 0, w = 2; i < curveCount; i++, w += 6) {
|
|
cx1 = world[w];
|
|
cy1 = world[w + 1];
|
|
cx2 = world[w + 2];
|
|
cy2 = world[w + 3];
|
|
x2 = world[w + 4];
|
|
y2 = world[w + 5];
|
|
tmpx = (x1 - cx1 * 2 + cx2) * 0.1875f;
|
|
tmpy = (y1 - cy1 * 2 + cy2) * 0.1875f;
|
|
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375f;
|
|
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375f;
|
|
ddfx = tmpx * 2 + dddfx;
|
|
ddfy = tmpy * 2 + dddfy;
|
|
dfx = (cx1 - x1) * 0.75f + tmpx + dddfx * 0.16666667f;
|
|
dfy = (cy1 - y1) * 0.75f + tmpy + dddfy * 0.16666667f;
|
|
pathLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy);
|
|
dfx += ddfx;
|
|
dfy += ddfy;
|
|
ddfx += dddfx;
|
|
ddfy += dddfy;
|
|
pathLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy);
|
|
dfx += ddfx;
|
|
dfy += ddfy;
|
|
pathLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy);
|
|
dfx += ddfx + dddfx;
|
|
dfy += ddfy + dddfy;
|
|
pathLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy);
|
|
curves[i] = pathLength;
|
|
x1 = x2;
|
|
y1 = y2;
|
|
}
|
|
if (percentPosition) position *= pathLength;
|
|
if (percentSpacing) {
|
|
for (int i = 0; i < spacesCount; i++)
|
|
spacesItems[i] *= pathLength;
|
|
}
|
|
|
|
float[] segments = this.segments;
|
|
float curveLength = 0;
|
|
for (int i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) {
|
|
float space = spacesItems[i];
|
|
position += space;
|
|
float p = position;
|
|
|
|
if (closed) {
|
|
p %= pathLength;
|
|
if (p < 0) p += pathLength;
|
|
curve = 0;
|
|
} else if (p < 0) {
|
|
AddBeforePosition(p, world, 0, output, o);
|
|
continue;
|
|
} else if (p > pathLength) {
|
|
AddAfterPosition(p - pathLength, world, verticesLength - 4, output, o);
|
|
continue;
|
|
}
|
|
|
|
// Determine curve containing position.
|
|
for (;; curve++) {
|
|
float length = curves[curve];
|
|
if (p > length) continue;
|
|
if (curve == 0)
|
|
p /= length;
|
|
else {
|
|
float prev = curves[curve - 1];
|
|
p = (p - prev) / (length - prev);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Curve segment lengths.
|
|
if (curve != prevCurve) {
|
|
prevCurve = curve;
|
|
int ii = curve * 6;
|
|
x1 = world[ii];
|
|
y1 = world[ii + 1];
|
|
cx1 = world[ii + 2];
|
|
cy1 = world[ii + 3];
|
|
cx2 = world[ii + 4];
|
|
cy2 = world[ii + 5];
|
|
x2 = world[ii + 6];
|
|
y2 = world[ii + 7];
|
|
tmpx = (x1 - cx1 * 2 + cx2) * 0.03f;
|
|
tmpy = (y1 - cy1 * 2 + cy2) * 0.03f;
|
|
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.006f;
|
|
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.006f;
|
|
ddfx = tmpx * 2 + dddfx;
|
|
ddfy = tmpy * 2 + dddfy;
|
|
dfx = (cx1 - x1) * 0.3f + tmpx + dddfx * 0.16666667f;
|
|
dfy = (cy1 - y1) * 0.3f + tmpy + dddfy * 0.16666667f;
|
|
curveLength = (float)Math.Sqrt(dfx * dfx + dfy * dfy);
|
|
segments[0] = curveLength;
|
|
for (ii = 1; ii < 8; ii++) {
|
|
dfx += ddfx;
|
|
dfy += ddfy;
|
|
ddfx += dddfx;
|
|
ddfy += dddfy;
|
|
curveLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy);
|
|
segments[ii] = curveLength;
|
|
}
|
|
dfx += ddfx;
|
|
dfy += ddfy;
|
|
curveLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy);
|
|
segments[8] = curveLength;
|
|
dfx += ddfx + dddfx;
|
|
dfy += ddfy + dddfy;
|
|
curveLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy);
|
|
segments[9] = curveLength;
|
|
segment = 0;
|
|
}
|
|
|
|
// Weight by segment length.
|
|
p *= curveLength;
|
|
for (;; segment++) {
|
|
float length = segments[segment];
|
|
if (p > length) continue;
|
|
if (segment == 0)
|
|
p /= length;
|
|
else {
|
|
float prev = segments[segment - 1];
|
|
p = segment + (p - prev) / (length - prev);
|
|
}
|
|
break;
|
|
}
|
|
AddCurvePosition(p * 0.1f, x1, y1, cx1, cy1, cx2, cy2, x2, y2, output, o, tangents || (i > 0 && space < PathConstraint.Epsilon));
|
|
}
|
|
return output;
|
|
}
|
|
|
|
static void AddBeforePosition (float p, float[] temp, int i, float[] output, int o) {
|
|
float x1 = temp[i], y1 = temp[i + 1], dx = temp[i + 2] - x1, dy = temp[i + 3] - y1, r = MathUtils.Atan2(dy, dx);
|
|
output[o] = x1 + p * MathUtils.Cos(r);
|
|
output[o + 1] = y1 + p * MathUtils.Sin(r);
|
|
output[o + 2] = r;
|
|
}
|
|
|
|
static void AddAfterPosition (float p, float[] temp, int i, float[] output, int o) {
|
|
float x1 = temp[i + 2], y1 = temp[i + 3], dx = x1 - temp[i], dy = y1 - temp[i + 1], r = MathUtils.Atan2(dy, dx);
|
|
output[o] = x1 + p * MathUtils.Cos(r);
|
|
output[o + 1] = y1 + p * MathUtils.Sin(r);
|
|
output[o + 2] = r;
|
|
}
|
|
|
|
static void AddCurvePosition (float p, float x1, float y1, float cx1, float cy1, float cx2, float cy2, float x2, float y2,
|
|
float[] output, int o, bool tangents) {
|
|
if (p < PathConstraint.Epsilon || float.IsNaN(p)) p = PathConstraint.Epsilon;
|
|
float tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u;
|
|
float ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p;
|
|
float x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt;
|
|
output[o] = x;
|
|
output[o + 1] = y;
|
|
if (tangents)
|
|
output[o + 2] = (float)Math.Atan2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt));
|
|
}
|
|
}
|
|
}
|