You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
10 KiB
279 lines
10 KiB
/******************************************************************************
|
|
* Spine Runtimes Software License v2.5
|
|
*
|
|
* Copyright (c) 2013-2016, Esoteric Software
|
|
* All rights reserved.
|
|
*
|
|
* You are granted a perpetual, non-exclusive, non-sublicensable, and
|
|
* non-transferable license to use, install, execute, and perform the Spine
|
|
* Runtimes software and derivative works solely for personal or internal
|
|
* use. Without the written permission of Esoteric Software (see Section 2 of
|
|
* the Spine Software License Agreement), you may not (a) modify, translate,
|
|
* adapt, or develop new applications using the Spine Runtimes or otherwise
|
|
* create derivative works or improvements of the Spine Runtimes or (b) remove,
|
|
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
|
|
* or other intellectual property or proprietary rights notices on or in the
|
|
* Software, including any copy thereof. Redistributions in binary or source
|
|
* form must include this license and terms.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
|
|
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
using System;
|
|
|
|
namespace Spine {
|
|
internal class Triangulator {
|
|
private readonly ExposedList<ExposedList<float>> convexPolygons = new ExposedList<ExposedList<float>>();
|
|
private readonly ExposedList<ExposedList<int>> convexPolygonsIndices = new ExposedList<ExposedList<int>>();
|
|
|
|
private readonly ExposedList<int> indicesArray = new ExposedList<int>();
|
|
private readonly ExposedList<bool> isConcaveArray = new ExposedList<bool>();
|
|
private readonly ExposedList<int> triangles = new ExposedList<int>();
|
|
|
|
private readonly Pool<ExposedList<float>> polygonPool = new Pool<ExposedList<float>>();
|
|
private readonly Pool<ExposedList<int>> polygonIndicesPool = new Pool<ExposedList<int>>();
|
|
|
|
public ExposedList<int> Triangulate (ExposedList<float> verticesArray) {
|
|
var vertices = verticesArray.Items;
|
|
int vertexCount = verticesArray.Count >> 1;
|
|
|
|
var indicesArray = this.indicesArray;
|
|
indicesArray.Clear();
|
|
int[] indices = indicesArray.Resize(vertexCount).Items;
|
|
for (int i = 0; i < vertexCount; i++)
|
|
indices[i] = i;
|
|
|
|
var isConcaveArray = this.isConcaveArray;
|
|
bool[] isConcave = isConcaveArray.Resize(vertexCount).Items;
|
|
for (int i = 0, n = vertexCount; i < n; ++i)
|
|
isConcave[i] = IsConcave(i, vertexCount, vertices, indices);
|
|
|
|
var triangles = this.triangles;
|
|
triangles.Clear();
|
|
triangles.EnsureCapacity(Math.Max(0, vertexCount - 2) << 2);
|
|
|
|
while (vertexCount > 3) {
|
|
// Find ear tip.
|
|
int previous = vertexCount - 1, i = 0, next = 1;
|
|
|
|
// outer:
|
|
while (true) {
|
|
if (!isConcave[i]) {
|
|
int p1 = indices[previous] << 1, p2 = indices[i] << 1, p3 = indices[next] << 1;
|
|
float p1x = vertices[p1], p1y = vertices[p1 + 1];
|
|
float p2x = vertices[p2], p2y = vertices[p2 + 1];
|
|
float p3x = vertices[p3], p3y = vertices[p3 + 1];
|
|
for (int ii = (next + 1) % vertexCount; ii != previous; ii = (ii + 1) % vertexCount) {
|
|
if (!isConcave[ii]) continue;
|
|
int v = indices[ii] << 1;
|
|
float vx = vertices[v], vy = vertices[v + 1];
|
|
if (PositiveArea(p3x, p3y, p1x, p1y, vx, vy)) {
|
|
if (PositiveArea(p1x, p1y, p2x, p2y, vx, vy)) {
|
|
if (PositiveArea(p2x, p2y, p3x, p3y, vx, vy)) goto break_outer; // break outer;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
break_outer:
|
|
|
|
if (next == 0) {
|
|
do {
|
|
if (!isConcave[i]) break;
|
|
i--;
|
|
} while (i > 0);
|
|
break;
|
|
}
|
|
|
|
previous = i;
|
|
i = next;
|
|
next = (next + 1) % vertexCount;
|
|
}
|
|
|
|
// Cut ear tip.
|
|
triangles.Add(indices[(vertexCount + i - 1) % vertexCount]);
|
|
triangles.Add(indices[i]);
|
|
triangles.Add(indices[(i + 1) % vertexCount]);
|
|
indicesArray.RemoveAt(i);
|
|
isConcaveArray.RemoveAt(i);
|
|
vertexCount--;
|
|
|
|
int previousIndex = (vertexCount + i - 1) % vertexCount;
|
|
int nextIndex = i == vertexCount ? 0 : i;
|
|
isConcave[previousIndex] = IsConcave(previousIndex, vertexCount, vertices, indices);
|
|
isConcave[nextIndex] = IsConcave(nextIndex, vertexCount, vertices, indices);
|
|
}
|
|
|
|
if (vertexCount == 3) {
|
|
triangles.Add(indices[2]);
|
|
triangles.Add(indices[0]);
|
|
triangles.Add(indices[1]);
|
|
}
|
|
|
|
return triangles;
|
|
}
|
|
|
|
public ExposedList<ExposedList<float>> Decompose (ExposedList<float> verticesArray, ExposedList<int> triangles) {
|
|
var vertices = verticesArray.Items;
|
|
var convexPolygons = this.convexPolygons;
|
|
for (int i = 0, n = convexPolygons.Count; i < n; i++) {
|
|
polygonPool.Free(convexPolygons.Items[i]);
|
|
}
|
|
convexPolygons.Clear();
|
|
|
|
var convexPolygonsIndices = this.convexPolygonsIndices;
|
|
for (int i = 0, n = convexPolygonsIndices.Count; i < n; i++) {
|
|
polygonIndicesPool.Free(convexPolygonsIndices.Items[i]);
|
|
}
|
|
convexPolygonsIndices.Clear();
|
|
|
|
var polygonIndices = polygonIndicesPool.Obtain();
|
|
polygonIndices.Clear();
|
|
|
|
var polygon = polygonPool.Obtain();
|
|
polygon.Clear();
|
|
|
|
// Merge subsequent triangles if they form a triangle fan.
|
|
int fanBaseIndex = -1, lastWinding = 0;
|
|
int[] trianglesItems = triangles.Items;
|
|
for (int i = 0, n = triangles.Count; i < n; i += 3) {
|
|
int t1 = trianglesItems[i] << 1, t2 = trianglesItems[i + 1] << 1, t3 = trianglesItems[i + 2] << 1;
|
|
float x1 = vertices[t1], y1 = vertices[t1 + 1];
|
|
float x2 = vertices[t2], y2 = vertices[t2 + 1];
|
|
float x3 = vertices[t3], y3 = vertices[t3 + 1];
|
|
|
|
// If the base of the last triangle is the same as this triangle, check if they form a convex polygon (triangle fan).
|
|
var merged = false;
|
|
if (fanBaseIndex == t1) {
|
|
int o = polygon.Count - 4;
|
|
float[] p = polygon.Items;
|
|
int winding1 = Winding(p[o], p[o + 1], p[o + 2], p[o + 3], x3, y3);
|
|
int winding2 = Winding(x3, y3, p[0], p[1], p[2], p[3]);
|
|
if (winding1 == lastWinding && winding2 == lastWinding) {
|
|
polygon.Add(x3);
|
|
polygon.Add(y3);
|
|
polygonIndices.Add(t3);
|
|
merged = true;
|
|
}
|
|
}
|
|
|
|
// Otherwise make this triangle the new base.
|
|
if (!merged) {
|
|
if (polygon.Count > 0) {
|
|
convexPolygons.Add(polygon);
|
|
convexPolygonsIndices.Add(polygonIndices);
|
|
} else {
|
|
polygonPool.Free(polygon);
|
|
polygonIndicesPool.Free(polygonIndices);
|
|
}
|
|
polygon = polygonPool.Obtain();
|
|
polygon.Clear();
|
|
polygon.Add(x1);
|
|
polygon.Add(y1);
|
|
polygon.Add(x2);
|
|
polygon.Add(y2);
|
|
polygon.Add(x3);
|
|
polygon.Add(y3);
|
|
polygonIndices = polygonIndicesPool.Obtain();
|
|
polygonIndices.Clear();
|
|
polygonIndices.Add(t1);
|
|
polygonIndices.Add(t2);
|
|
polygonIndices.Add(t3);
|
|
lastWinding = Winding(x1, y1, x2, y2, x3, y3);
|
|
fanBaseIndex = t1;
|
|
}
|
|
}
|
|
|
|
if (polygon.Count > 0) {
|
|
convexPolygons.Add(polygon);
|
|
convexPolygonsIndices.Add(polygonIndices);
|
|
}
|
|
|
|
// Go through the list of polygons and try to merge the remaining triangles with the found triangle fans.
|
|
for (int i = 0, n = convexPolygons.Count; i < n; i++) {
|
|
polygonIndices = convexPolygonsIndices.Items[i];
|
|
if (polygonIndices.Count == 0) continue;
|
|
int firstIndex = polygonIndices.Items[0];
|
|
int lastIndex = polygonIndices.Items[polygonIndices.Count - 1];
|
|
|
|
polygon = convexPolygons.Items[i];
|
|
int o = polygon.Count - 4;
|
|
float[] p = polygon.Items;
|
|
float prevPrevX = p[o], prevPrevY = p[o + 1];
|
|
float prevX = p[o + 2], prevY = p[o + 3];
|
|
float firstX = p[0], firstY = p[1];
|
|
float secondX = p[2], secondY = p[3];
|
|
int winding = Winding(prevPrevX, prevPrevY, prevX, prevY, firstX, firstY);
|
|
|
|
for (int ii = 0; ii < n; ii++) {
|
|
if (ii == i) continue;
|
|
var otherIndices = convexPolygonsIndices.Items[ii];
|
|
if (otherIndices.Count != 3) continue;
|
|
int otherFirstIndex = otherIndices.Items[0];
|
|
int otherSecondIndex = otherIndices.Items[1];
|
|
int otherLastIndex = otherIndices.Items[2];
|
|
|
|
var otherPoly = convexPolygons.Items[ii];
|
|
float x3 = otherPoly.Items[otherPoly.Count - 2], y3 = otherPoly.Items[otherPoly.Count - 1];
|
|
|
|
if (otherFirstIndex != firstIndex || otherSecondIndex != lastIndex) continue;
|
|
int winding1 = Winding(prevPrevX, prevPrevY, prevX, prevY, x3, y3);
|
|
int winding2 = Winding(x3, y3, firstX, firstY, secondX, secondY);
|
|
if (winding1 == winding && winding2 == winding) {
|
|
otherPoly.Clear();
|
|
otherIndices.Clear();
|
|
polygon.Add(x3);
|
|
polygon.Add(y3);
|
|
polygonIndices.Add(otherLastIndex);
|
|
prevPrevX = prevX;
|
|
prevPrevY = prevY;
|
|
prevX = x3;
|
|
prevY = y3;
|
|
ii = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove empty polygons that resulted from the merge step above.
|
|
for (int i = convexPolygons.Count - 1; i >= 0; i--) {
|
|
polygon = convexPolygons.Items[i];
|
|
if (polygon.Count == 0) {
|
|
convexPolygons.RemoveAt(i);
|
|
polygonPool.Free(polygon);
|
|
polygonIndices = convexPolygonsIndices.Items[i];
|
|
convexPolygonsIndices.RemoveAt(i);
|
|
polygonIndicesPool.Free(polygonIndices);
|
|
}
|
|
}
|
|
|
|
return convexPolygons;
|
|
}
|
|
|
|
static private bool IsConcave (int index, int vertexCount, float[] vertices, int[] indices) {
|
|
int previous = indices[(vertexCount + index - 1) % vertexCount] << 1;
|
|
int current = indices[index] << 1;
|
|
int next = indices[(index + 1) % vertexCount] << 1;
|
|
return !PositiveArea(vertices[previous], vertices[previous + 1], vertices[current], vertices[current + 1], vertices[next],
|
|
vertices[next + 1]);
|
|
}
|
|
|
|
static private bool PositiveArea (float p1x, float p1y, float p2x, float p2y, float p3x, float p3y) {
|
|
return p1x * (p3y - p2y) + p2x * (p1y - p3y) + p3x * (p2y - p1y) >= 0;
|
|
}
|
|
|
|
static private int Winding (float p1x, float p1y, float p2x, float p2y, float p3x, float p3y) {
|
|
float px = p2x - p1x, py = p2y - p1y;
|
|
return p3x * py - p3y * px + px * p1y - p1x * py >= 0 ? 1 : -1;
|
|
}
|
|
}
|
|
}
|